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Abstract
We analyse the role of orbital degeneracy in possible magnetic and orbital
instabilities by solving exactly a two-site molecule with two orbitals of either eg

or t2g symmetry at quarter-filling. As a generic feature of both models one finds
that the spin and orbital correlations have opposite signs in the low-temperature
regime when the orbitals are degenerate, in agreement with the Goodenough–
Kanamori rules. While Hund’s exchange coupling JH induces ferromagnetic
spin correlations in both models, it is more efficient for t2g orbitals where
the orbital quantum number is conserved along the hopping processes. We
show that the ground state and finite temperature properties may change even
qualitatively with increasing Coulomb interaction when the crystal field splitting
of the two orbitals is finite, and the Goodenough–Kanamori rules may not be
followed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Hubbard model has been employed for a long time as the conceptually simplest model
which might explain metallic ferromagnetism of itinerant electrons [1, 2] and localization
due to Coulomb repulsion [3]. Unlike initially expected, this model does not easily yield
ferromagnetism on the hypercubic lattice and some additional conditions have to be satisfied
to stabilize a ferromagnetic (FM) phase. As one of very few exact result in this many-body
problem, Nagaoka established long ago [4] that in the limit of infinite local Coulomb interaction
U = ∞, a single hole doped into a half-filled system leads to the FM ground state. There are
several indications that this remains valid for a finite concentration of holes [5, 6]. Nevertheless
the ground state of the Hubbard model on the square lattice may only be FM for values of U
far larger than the bandwidth [7]. Ferromagnetism may be also promoted by a particular lattice
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or band structure [6], or even by disorder [8]. Lieb was the first to show that a half-filled flat
band induces a finite magnetization [9]. Furthermore, Hirsch and others have focused on the
effect of additional off-diagonal matrix elements of the Coulomb interaction [10].

A major step towards understanding the physics of metallic ferromagnetism in transition
metals such as Fe, Co, and Ni, was the suggestion that orbital degeneracy might play a crucial
role. It was first pointed out by Slater et al [11] and then stressed by van Vleck [12] that in
the presence of degenerate orbitals, Hund’s exchange coupling JH favours local triplet spin
configurations of two electrons occupying different orbitals. This has important consequences
for ferromagnetism as local moments are formed and thus JH helps to stabilize magnetic
phases, including the FM one [13]. Roth examined the doubly degenerate model at quarter-
filling in three dimensions [14]. She found that the ground state is a spin triplet and orbital
singlet for two sites, i.e., the system forms an orbital superlattice structure in which two
sublattices have different orbitals occupied by electrons at each of them. This interrelation
between staggered orbital order and spin ferromagnetism was next emphasized by Kugel and
Khomskii [15], who derived an effective strong coupling Hamiltonian with coupled spin and
orbital degrees of freedom, extended further by Cyrot and Lyon-Caen [16] who included on-
site pair hopping, and by Inagaki [17]. These seminal papers started a new field: spin–orbital
physics in correlated transition metal oxides [18], where superexchange models derived in the
strong coupling regime provide a theoretical background for understanding both magnetic and
optical properties [19]. Numerous spin–orbital models have been derived in the regime of
large Coulomb interactions, for systems with both eg [20] and with t2g [21] orbital degrees of
freedom, and these are currently being investigated.

While systems of higher dimensionality are clearly the ones of most interest [22, 23],
significant insight into the complementary behaviour of spin and orbital degrees of freedom
was obtained in a one-dimensional (1D) model. Indeed, many of the essential features of such
1D systems were established by quantum Monte Carlo simulations [24], exact diagonalization
(ED) studies [25–27], the combination of these two approaches [28], and the Density Matrix
Renormalization Group (DMRG) method [29]. Spin, charge, and orbital correlations in the 1D
Hubbard model with t2g orbitals at several densities have been also examined in a very recent
study by Xavier et al [30], which combines the DMRG and the Lanczos techniques.

Unfortunately, in a vast majority of studies, a conceptually simplified model, i.e., the
degenerate Hubbard model with equivalent orbitals [22] or at best with different bandwidth
obtained with diagonal hopping [23], has been investigated so far. However, it has been recently
shown within dynamical mean field theory that a finite on-site hybridization between orbitals
enhances the charge and orbital fluctuations and plays a significant role especially for the
orbital-selective Mott transition [31]. In fact, a proper description of a system with eg orbitals
involves a more complex kinetic energy Hamiltonian as in this case the orbital flavour during
the intersite hopping is not conserved, and this is likely to lead to partial orbital polarization
which is expected to strongly modify the magnetic instabilities [32, 33], resulting in a rich
phase diagram. In addition only little is known in analytic form about these models, besides
expansions in hopping parameter t around the atomic limit which result in the celebrated
Goodenough–Kanamori rules [34, 35] and spin–orbital models. In particular cases, such as
half-filling in two-band models, they corroborate the results obtained from weak coupling
approaches, and therefore gaining further qualitative insight into the corresponding problems
is unlikely. In contrast, at quarter-filling, weak coupling approaches are at odds with the strong
coupling expansions [32], and the situation remains controversial. Fortunately this case can be
studied rigorously on the analytical level, both for eg and t2g orbitals, in a two-site molecule.

The paper is organized as follows. First, we introduce a realistic model with two eg

orbitals and compare it with the one for t2g orbitals in section 2. Second, the solutions for
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both models are given and compared with each other in section 3. Thereby, we identify
characteristic differences in the behaviour of both orbital degrees of freedom [36]. Furthermore,
in section 3 we verify whether the phenomenon of a complementary behaviour of the spin and
orbital flavours is also a characteristic feature of this particular case by analysing spin and
pseudospin correlation functions. Comparisons to strong coupling expansions are presented as
well. Next, in section 4 we investigate the influence of finite crystal field splitting on the ground
state properties. Finally, section 5 summarizes the paper and gives general conclusions.

2. Model Hamiltonian for eg and for t2g orbitals

The magnetic and orbital instabilities within the eg band become especially relevant in the
context of doped nickelates La2−x SrxNiO4 (LSNO), where interesting novel phases including
the stripe order were discovered [37]. Even though doped nickelate LSNO is isostructural with
its cuprate counterpart La2−x SrxCuO4, its electronic degrees of freedom are more complicated.
In fact, a realistic Hamiltonian for LSNO must contain, besides the x2 − y2 orbital states which
mainly determine the properties of the cuprates, also the 3z2 −r 2 orbital states, so as to account
for the actual filling with two holes and for the high-spin state (S = 1) in the stoichiometric
compound. Such a model of interacting eg electrons in the (a, b) plane may be written as
follows,

H = Hkin + Hint + Hcf, (1)

with two orbital flavours, |x〉 ∼ x2 − y2 and |z〉 ∼ 3z2 − r 2, forming a basis in the orbital
space. The kinetic energy is described by

Hkin =
∑

〈i j〉

∑

αβσ

tαβ

i j c†
iασ c jβσ , tαβ

i j = − t

4

(
3 ±√

3
±√

3 1

)
, (2)

where t stands for an effective (ddσ) hopping matrix element due to the hybridization with
oxygen orbitals on Ni–O–Ni bonds, and the off-diagonal hopping t xz

i j along a and b axes
depends on the phase of the |x〉 orbital along the considered cubic direction.

For our purpose it is most convenient to consider an eg orbital basis consisting of a
directional orbital |ζ 〉 along the molecular bond and a planar orbital |ξ〉 orthogonal to |ζ 〉 [28].
Pairs of such orthogonal orbitals defining a new basis might be obtained by the following
transformation of the original orbital basis {|x〉, |z〉},

( |ζ 〉
|ξ〉

)
=

(
cos θ

2 sin θ
2

−sin θ
2 cos θ

2

) ( |z〉
|x〉

)
, (3)

with the angle θ = ±2π/3 depending on whether one considers the bond along the a or b axis.
This rotation leads to a simple diagonal form of the hopping matrix,

tζ ξ

i j = −t

(
1 0
0 0

)
, (4)

allowing only for intersite transitions between two directional |ζ 〉 orbitals along each bond [38].
We compare this case with a frequently studied degenerate Hubbard model with equivalent
orbitals. Such a model describes the dynamics of two active t2g orbitals, for example, for a
molecular bond along the a axis, |ζ 〉 ∼ |xz〉 and |ξ〉 ∼ |xy〉, so that the hopping matrix is
diagonal,

tζ ξ

i j = −t

(
1 0
0 1

)
. (5)

Pairs of orthogonal orbitals {|ζ 〉, |ξ〉} used in both models are presented in figure 1.
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(a) (b)

Figure 1. Pairs of orthogonal orbitals {|ζ 〉, |ξ〉} for a molecular bond along the a axis for (a) eg

orbitals, and (b) t2g orbitals.

The electron–electron interactions are described by the on-site terms, which we write in
the following form [39],

Hint = U
∑

i

(nix↑nix↓ + niz↑niz↓) + (
U − 5

2 JH
) ∑

i

nix niz

− 2JH

∑

i

Si x · Si z + JH

∑

i

(c†
i x↑c†

i x↓ciz↓ciz↑ + c†
i z↑c†

i z↓cix↓cix↑). (6)

Here U and JH stand for the intraorbital Coulomb and Hund’s exchange elements, whereas
niα = ∑

σ niασ is the electron density at site i in the α = x, z orbital state.
The last term Hcf stands for the uniform crystal-field splitting between |x〉 and |z〉 orbitals

along the c axis,

Hcf = 1
2 E0

∑

iσ

(nixσ − nizσ ). (7)

The splitting of two eg orbitals occurs due to the tetragonal Jahn–Teller distortion of the NiO6

octahedron. In La2NiO4, however, the octahedron, with the Ni–O–Ni bond lengths being
1.95 (2.26) Å in-plane (out-of-plane) [40], respectively, is much less distorted than the CuO6

octahedron with 1.89 and 2.43 Å bond lengths in La2CuO4 [41], which reflects the difference
in electron filling. In what follows we consider only a realistic positive E0 favouring, due to
elongated octahedra, the |z〉 occupancy over the |x〉 occupancy by the eg electrons in doped
compounds.

3. Physical properties at orbital degeneracy

3.1. Classification of eigenstates using the symmetry properties

In this section we present an exact solution of a two-site molecule at quarter-filling with two
degenerate orbitals of either eg or t2g symmetry. Although it is straightforward to solve the
present problem numerically, it is more instructive to find the solution analytically. During this
process several important aspects will be clarified.

While the total spin operator commutes with the Hamiltonian and its z-component can
be used to label the eigenstates, this does not hold for the total orbital pseudospin operator
T = ∑

i Ti , where its three components are given by

Ti =
{
T +

i , T −
i , T ζ

i

}
=

{
∑

σ

c†
iξσ ciζσ ,

∑

σ

c†
iζσ ciξσ , 1

2

∑

σ

(niξσ − niζσ )

}
. (8)

In order to distinguish the third component of the pseudospin from that conventionally used for
a bond along the c axis (T z

i ), we have labelled it with the ζ index. Note however that in contrast
to the spin operator Sz , the ζ -component of the pseudospin operator,

T ζ =
∑

i

T ζ

i , (9)
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does not commute with the Hamiltonian (1), so the states with different values of this observable
mix with each other. Nevertheless, we will use its eigenvalues together with the z-component
Sz of the total spin operator S to specify multiparticle states in terms of which we write
the Hamiltonian. It is straightforward to construct all 28 states explicitly; they are listed in
appendix A.

In the high-spin subspaces Sz = ±1, the Hamiltonian (1) is decomposed into a zero 2 × 2
matrix H0σ involving the two |�ασ 〉 states with T ζ = ±1, and two 2 × 2 matrices:

H1σ = (〈�+
1σ |, 〈�−

2σ |)
(

0 tζ ζ − tξξ

tζ ζ − tξξ U − 3JH

) ( |�+
1σ 〉

|�−
2σ 〉

)
, (10)

and

H2σ = (〈�−
1σ |, 〈�+

2σ |)
(

0 tζ ζ + tξξ

tζ ζ + tξξ U − 3JH

) ( |�−
1σ 〉

|�+
2σ 〉

)
. (11)

Now we are left with the Sz = 0 subspace. In the S = 1 sector one recovers the same
eigenenergies: two zeros corresponding to the above T ζ = ±1 localized states with T ζ = ±1,
and the eigenvalues following from the matrices H1σ , and H2σ . In the S = 0 subspace, using
the states with T ζ = ±1, the following Hamiltonian matrices are found in addition:

H3 = (〈	−
1 |, 〈	+

2 |, 〈	+
3 |, 〈	−

4 |)




0 2tζ ζ 0 0
2tζ ζ U JH 0

0 JH U 2tξξ

0 0 2tξξ 0









|	−
1 〉

|	+
2 〉

|	+
3 〉

|	−
4 〉



 , (12)

and

H4 = (〈	−
2 |, 〈	−

3 |)
(

U JH

JH U

) ( |	−
2 〉

|	−
3 〉

)
. (13)

Finally, in the sector with T ζ = 0, the Hamiltonian matrices read

H5 = (〈	+
7 |, 〈	−

8 |)
(

U − JH tζ ζ + tξξ

tζ ζ + tξξ 0

) ( |	+
7 〉

|	−
8 〉

)
, (14)

H6 = (〈	−
7 |, 〈	+

8 |)
(

U − JH tζ ζ − tξξ

tζ ζ − tξξ 0

) ( |	−
7 〉

|	+
8 〉

)
. (15)

3.2. Eigenenergies for t2g orbitals

Let us consider first a model with two active and equivalent t2g orbitals, as depicted in
figure 1(b). The third orbital may be neglected in various contexts: (i) either in a d1

configuration when a crystal field raises the energy of the third orbital above the other two
we consider here, or (ii) in a d3 low-spin configuration when a crystal field lowers the energy
of the third orbital below the other two (the former one being filled), or (iii) in a d5 low-spin
configuration when a crystal field lowers the energy of the third orbital below the other two, in
which case one meets the problem of one hole in two orbitals. Of the few layered perovskites
that may correspond to these cases let us mention NdSrCrO4 [42]. We note that the distortions
in layered perovskites differ from the ones in cubic perovskites, where they are typically
trigonal. For this model every matrix in equations (12)–(15) can be easily diagonalized and
the corresponding eigenvalues are listed in appendix B. For clarity we have used the symmetry
and classified them into triplet (S = 1) and singlet (S = 0) subspaces.

To get more insight into the competition between the tendencies towards the
antiferromagnetic (AF) and FM ground states, we now discuss the lowest energy eigenstates in
the strong coupling (large-U ) limit. As expected, the lowest energy,

E
t2g

T0
= 1

2

(
U − 3JH −

√
(U − 3JH)2 + 16t2

)
, (16)
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Table 1. Lowest eigenenergies of the model (1) for t2g orbitals at U = 8t , obtained for the
representative values of JH = 0, U/8 and U/4. The eigenstates |n〉 are specified by the total spin
Sn and the expectation value of the ζ -component of the total pseudospin T ζ (9). Triplet states with
Sn = 1 have three components Sz

n = ±1, 0.

JH = 0 JH = U/8 JH = U/4

En/t Sn T ζ
n En/t Sn T ζ

n En/t Sn T ζ
n

−0.4721 1 0 −0.7016 1 0 −1.2361 1 0
0 ±1 −0.5311 0 0 −0.6056 0 0
0 0 0 0 0 0

obtained by the diagonalization of the matrix in equation (11), belongs to the spin triplet
coexisting with the pseudospin singlet. In the case of strong on-site interorbital repulsion
(U − 3JH � t), the lowest high-spin energy (16) reads

E
t2g

T0
	 − 4t2

U − 3JH
. (17)

Note however that finite JH could significantly reduce the value of the interorbital repulsion
U − 3JH, so that it would no longer be much larger than t . As a consequence, significant
corrections to the above result obtained to second order in t/(U − 3JH) are expected in this
case. Analogously, the lowermost low-spin energy results from the matrix in equation (12),
which is degenerate with the one obtained from the matrix in equation (14),

E
t2g

S0
= − 1

2

(
U − JH −

√
(U − JH)2 + 16t2

)
	 − 4t2

U − JH
, (18)

in the strong coupling regime.
Comparison of equation (18) with the lowest high-spin energy given by equation (17)

allows one to draw interesting conclusions about conditions required for ferromagnetism. It
is apparent that E

t2g

S0
and E

t2g

T0
are degenerate for JH = 0. However, even infinitesimally small

Hund’s exchange coupling lifts this degeneracy and might give rise to spin ferromagnetism
combined with the alternating orbital (AO) pseudospin correlation.

As an illustrative example, we present in table 1 the lowest eigenenergies En obtained from
the ED of the Hamiltonian (1) for the t2g orbitals in the strong coupling regime U = 8t for a
few values of JH. We have specified them in terms of the total spin Sn = 0, 1. Another quantity
used for the classification of states is the ζ -component of the total pseudospin operator; see
equation (9). However, even in this case it is not a good quantum number being modified by
the ‘pair-hopping’ processes from one orbital to the other present in equation (6). Indeed, in
matrix (12), a sector consisting of |	−

1 〉 and |	+
2 〉 states, carrying the T ζ = −1 pseudospin

flavour, is coupled to the one in terms of |	+
3 〉 and |	−

4 〉 states, carrying the opposite T ζ = 1
flavour. Similarly, sectors with different pseudospin flavours are mixed in matrix (13). Thus,
one has to determine the expectation values of T ζ by a direct evaluation using the eigenstates
of the Hamiltonian.

The ground state of the t2g model with finite JH is a spin triplet accompanied by a
pseudospin singlet (cf table 1). Notice however that its energy −1.2361t obtained for JH =
U/4 differs vastly from the value E

t2g

T0
= −2t estimated roughly from equation (17). The

reason of this discrepancy is the failure of the second-order perturbation theory controlled by
t2/(U −3JH), being here of order O(t). Therefore, it can be used only for qualitative arguments
in this regime, while it works better for smaller JH = U/8, yielding there −0.8t , a value much
closer to the exact energy −0.7016t .
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Table 2. The same as in table 1 but for eg orbitals, and four representative values of Hund’s
exchange: JH = 0, U/8, U/4, and U/3.

JH = 0 JH = U/8 JH = U/4 JH = U/3

En/t Sn T ζ
n En/t Sn T ζ

n En/t Sn T ζ
n En/t Sn T ζ

n

−0.4721 0 −1 −0.4784 0 −0.9985 −0.4983 0 −0.9935 −1.0 1 0.0
−0.1231 1 0 −0.1926 1 0.0 −0.4142 1 0.0 1 0.0

1 0 1 0.0 1 0.0 −0.5204 0 −0.9877
0 0 −0.1401 0 0.0 −0.1623 0 0.0 −0.1813 0 0.0
0 0 0 0.0 0 0.0 0 0.0

3.3. Eigenenergies for eg orbitals

Turning now to the eg orbital model and recollecting the immobile |ξ〉 orbital flavour with
tξξ = 0, one immediately notices two sets of two identical 2 × 2 subspaces spanned by the
T ζ = 0 states, described by the matrices in equations (14) and (15), which readily yield two
doubly degenerate singlets (cf appendix C). Diagonalizing the submatrix (12) yields the three
eigenvalues given in appendix C. The first of them (C.3) corresponds to the lowest energy
low-spin state. In the strong coupling regime, i.e., for (U − JH) � t , one finds

E
eg

S0
	 − 4t2U

U 2 − J 2
H

. (19)

It has to be compared with the lowest eigenvalue of the Sz = 1 subspace, the lowest energy
doubly degenerate spin triplet,

E
eg

T0
= 1

2

(
U − 3JH −

√
(U − 3JH)2 + 4t2

)
, (20)

obtained by the diagonalization of the matrices (10) and (11). It corresponds, as in the model
with t2g orbitals, to the pseudospin singlet (Tn = 0). In the strong coupling regime it yields the
lowest high-spin energy,

E
eg

T0
	 − t2

U − 3JH
. (21)

Note that the energy is much higher than that for the t2g model, see equation (17), as only one
electron is mobile.

Based on the lowest energy excitations (19) and (21) one can easily notice a striking
difference between t2g and eg orbitals with respect to the ground state. Indeed, in contrast to
the t2g model where even infinitesimally small Hund’s exchange coupling lifts the degeneracy
between the lowest energy singlet and triplet excitations and stabilizes the FM spin correlation,
one can expect that the singlet state with the energy E

eg

S0
(C.3) remains the eg ground state up to

JH ∼ U/4.
The corresponding exact eigenenergies of the Hamiltonian (1) with eg orbitals obtained

in the strong coupling regime U = 8t for a few values of JH are listed in table 2. The data
show that increasing JH diminishes the energy difference between the lowest singlet and the
first two triplet excited states. Remarkably, however, even for unrealistically large JH = U/4,
the eg ground state is still a singlet with almost fully occupied mobile pseudospin |ζ 〉 orbitals
(cf table 2) contradicting our predictions from the strong coupling regime. It follows from
the approximate low-spin state energy E

eg

S0
(19) which overestimates the tendency towards

ferromagnetism due to the performed expansion, and the transition from the singlet to the high-
spin state occurs only for JH 	 0.27U . Indeed, the ground state found for JH = U/3 is a
triplet, with the energy well below that of the singlet state (see table 2). Therefore, although
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Figure 2. Temperature dependence of local moments (a) spin 〈S2
i 〉, (b) pseudospin 〈T2

i 〉, and of
intersite correlations (c) spin 〈S1 · S2〉, (d) pseudospin 〈T1 · T2〉, as obtained for the model with eg

orbitals, for increasing values of Hund’s exchange: JH = U/8 (dashed line), JH = U/4 (solid line)
and JH = U/3 (dotted line). Parameters: U = 8t , E0 = 0.

Hund’s exchange coupling JH is a driving force of the FM spin correlations in both models, it
is decisively more efficient in the case of t2g orbitals, where already infinitesimal JH stabilizes
the high-spin state as both pseudospins are mobile.

Actually, one can rewrite the interaction term of the Hamiltonian Hint (6) as a superposition
of interactions in different channels, involving the density, magnetization, orbital polarization,
magnetic orbital polarization, and on-site orbital flip term, respectively [32]. In each of them
the interaction strength is different: it is systematically attractive (repulsive) in the magnetic
(density) channels, while it turns repulsive in the orbital polarization channel for 5JH > U . As a
result, one expects a transition in the ground state from pseudospin triplet to pseudospin singlet
with increasing JH/U . This is precisely the transition we discussed above for eg electrons. In
contrast, the magnetic instability takes over for t2g electrons, and the spin triplet ground state is
found at any JH > 0.

3.4. Correlation functions and susceptibility at orbital degeneracy

We now turn to the temperature dependence of the on-site 〈S2
i 〉 and intersite 〈S1 · S2〉 spin

correlations, and the on-site 〈T2
i 〉 and intersite 〈T1 · T2〉 pseudospin correlations. The latter

yield information about an orbital state together with orbital correlation between neighbouring
sites.

In figure 2 we present the temperature dependence of the spin and pseudospin correlation
functions as well as both susceptibilities of the model with eg orbitals. We have set Hund’s
exchange coupling to be JH/U = 1/8 (dashed line) and JH/U = 1/4 (solid line). At low
temperature, one expects charge localization as the system is in the strong coupling regime
U = 8t . Indeed, the local spin moment 〈S2

i 〉 reaches virtually the magnitude S(S + 1) = 3/4
for the spin S = 1/2. A rise of 〈S2

i 〉 above this value upon increasing temperature is caused
by thermal excitations to triplet states. They are favoured by Hund’s interaction and form local
high-spin configurations. Consequently, the increase of 〈S2

i 〉 is larger for stronger JH = U/4.



Magnetic and orbital correlations in a two-site molecule 7457

10
-3

10
-2

10
-1

10
0

10
1

10
20.60

0.65

0.70

0.75

0.80

0.85

〈S
i2 〉

10
-3

10
-2

10
-1

10
0

10
1

10
20.60

0.65

0.70

0.75

0.80

0.85

〈T
i2 〉

10
-3

10
-2

10
-1

10
0

10
1

10
2

kBT/t

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

〈S
1⋅S

2〉

10
-3

10
-2

10
-1

10
0

10
1

10
2

kBT/t

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

〈T
1⋅T

2〉

(a) (b)

(c) (d)

Figure 3. The same as in figure 2 but for the model with two degenerate t2g orbitals, and for JH = 0
(dotted line), JH = U/8 (dashed line), JH = U/4 (solid line).
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Figure 4. Temperature dependence of the spin susceptibility log(χs/γ
2 N) per site (N = 2) as

obtained for two values of Hund’s exchange, JH = U/8 (dashed lines) and JH = U/4 (solid lines),
for (a) eg model, and (b) t2g model. For comparison the susceptibilities obtained with JH = U/3
for the eg model and with JH = 0 for the t2g model are shown by dotted lines. Parameters: U = 8t ,
E0 = 0.

Next, the intersite spin correlation function 〈S1 · S2〉 indicates the low-spin (AF) nature of
the ground state, whereas the corresponding pseudospin function 〈T1 · T2〉 illustrates the ferro
orbital (FO) pseudospin correlation.

The results obtained within the t2g model are qualitatively different. First, at JH = 0,
apart from spin SU(2) symmetry there is an additional SU(2) symmetry for orbital degrees
of freedom, resulting in higher SU(4) symmetry [43], and the intersite spin and pseudospin
correlation functions are both negative and identical. Second, at finite JH positive 〈S1 · S2〉
indicates the FM nature of the ground state supported by the pseudospin singlet with negative
〈T1 · T2〉 correlations shown in figure 3.

The gradual increase of triplet intersite correlations 〈S1 · S2〉 observed for the eg model
is also well recognized in the spin susceptibility; see figure 4(a). Upon taking the logarithm
of χs we find a typical AF behaviour with a characteristic cusp at the crossover temperature
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Figure 5. Temperature dependence of (a) the specific heat C per site and (b) the entropy S, as
obtained for eg orbitals with: JH = U/8 (dashed line), JH = U/4 (solid line), and JH = U/3
(dotted line). Parameters: U = 8t , E0 = 0.
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Figure 6. The same as in figure 5 but for t2g orbitals. Dotted, dashed, and solid line corresponds to
JH = 0, JH = U/8, and JH = U/4, respectively.

Tc(eg). Obviously, the AF array that sets in has zero net magnetic moment at a temperature
below Tc(eg) and this explains the observed cusp in χs . Only for large JH = U/3 is the ground
state a triplet, and the spin susceptibility changes to the Curie–Weiss type. In contrast, in the
case of the t2g model (figure 4(b)), χs is already large at low temperature for JH = 0 as the
ground state has degenerate singlet and triplet states. Increasing JH gives here only moderate
enhancement of the spin susceptibility as the degeneracy of the ground state is then removed.

3.5. Specific heat and entropy at orbital degeneracy

Different energy spectra of the eg and t2g systems result in quite different temperature behaviour
of the specific heat C and the entropy S, as shown in figures 5 and 6. Consider first the eg

system. As depicted in figure 5, a low-temperature peak of the specific heat coincides with the
characteristic kink in the susceptibility χs (cf figure 4(a)). Comparing the position of the low
temperature peaks corresponding to JH = U/8 and JH = U/4, one finds that increasing JH

reduces the value of the characteristic temperature Tc(eg) that marks the crossover to the high-
spin state for the eg system. Note, however, that for JH = U/4 the low-temperature peak in the
specific heat splits into two. The first one corresponds to a transition from the singlet ground
state to the first two triplet excited states with the excitation energy �E1/t = 0.0841, whereas
the second one appears due to the higher energy charge excitations, with the excitation energies
�E2/t = 0.336 and �E3/t = 0.498, respectively. In contrast, when JH = U/8 the excitation
energy into the first excited state is much larger, �E ′

1/t = 0.286, whereas the other excitation
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Figure 7. Zero temperature intersite correlation functions: spin 〈S1 ·S2〉 (solid lines) and pseudospin
〈T1 · T2〉 (dashed lines) as functions of the Stoner parameter U + JH in the two-band model at
JH = U/4 for (a) eg orbitals, and (b) t2g orbitals.

energies are nearly unaltered: �E ′
2/t = 0.338 and �E ′

3/t = 0.478. This results in a single
broad low-temperature peak. High-temperature peaks occur due to thermal excitations which
create double occupancies and lead to charge delocalization, well seen in the suppression of
〈S2

i 〉. Finally, at large JH = U/3 all peaks in the specific heat merge into a single broad peak at
higher temperature.

Turning now to the temperature dependence of the entropy depicted in figure 5(b), one
finds S 	 0 in the low-T regime for the singlet ground state. Basically, the overall rapid
increase of the entropy around Tc(eg) in figure 5(b) is very much the same for JH = U/8
and JH = U/4, corresponding to the low-temperature peak in the specific heat. However, a
detailed behaviour of S depends on JH. In the regime of small Hund’s exchange JH � U/8,
where L S = 16 singly occupied states are well separated from doubly occupied ones, S
possesses a point of inflection S = kB ln 16 at kBT 	 t , which follows from the gapped
character of the specific heat. In contrast, for the larger JH = U/4, the entropy increase starts
at lower temperature as the energy of the singlet–triplet excitation is low. Here the gap between
singly and doubly occupied states is smaller and the corresponding point of inflection is less
transparent. The limiting value S = kB ln 28 results from the calculation performed in the
canonical ensemble.

The situation is quite different in the case of the t2g model. Unlike the eg case, increasing
JH shifts Tc(t2g) towards higher temperatures (figure 6). As a result, the crossover temperatures
of both systems differ substantially, especially in the regime of large Hund’s exchange coupling
JH ∼ U/4. Indeed, from the position of the low-temperature peak of the specific heat in
figures 5(a) and 6(a), one can read off that kBTc(eg) = 0.025t , whereas kBTc(t2g) = 0.35t . The
origin of this marked difference is certainly the fact that increasing JH diminishes (enlarges)
the gap between the spin singlet (triplet) ground state and the first excited triplet (singlet) state
of the eg (t2g) system, respectively (cf tables 1 and 2). In contrast to the eg case, the entropy is
finite in the low-temperature regime, and approaches either the value kB ln 3 for both JH = U/8
and JH = U/4 or kB ln 6 when JH = 0; see figure 6(b). Indeed, for JH = 0, the ground state
corresponds to six degenerate states—three of them constitute a spin triplet, whereas the others
are singlets, as shown in table 1. However, any finite JH > 0 splits up these states and leads to
the triplet ground state with the entropy S = kB ln 3. As in the eg case, S has a clear point of
inflection only in the regime of small Hund’s exchange coupling JH � U/8.

To summarize this section, we compare in figure 7 the intersite spin 〈S1 · S2〉 and
pseudospin 〈T1 · T2〉 correlation functions for the eg system (cf figure 7(a)) and for the t2g

system (cf figure 7(b)) as a functions of the Stoner parameter U + JH. Note that 〈S1 · S2〉 is
finite and negative even in the noninteracting U = 0 limit due to the Pauli principle. On the
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one hand, the eg results illustrate the AF correlations in the ground state (negative 〈S1 · S2〉)
owing to the preferred mobile pseudospin |ζ 〉. On the other hand, the ground state of the t2g

system with a finite interaction is a spin triplet as 〈S1 · S2〉 is positive and a pseudospin singlet
as the corresponding correlation function 〈T1 · T2〉 is negative. We therefore conclude that
the ground state properties strongly depend on the orbital correlations, in agreement with the
Goodenough–Kanamori rules [34].

4. New features at finite crystal field

4.1. Correlation functions and susceptibility at finite crystal field

We now discuss the influence of the crystal field splitting given by equation (7). Here we are
interested in the nontrivial case of crystal field acting along the c axis perpendicular to the
chain. Hence, as we have been working with the eg orbital basis consisting of a directional
orbital along the molecular bond |ζ 〉 and an orthogonal to it planar orbital |ξ〉, one needs to
rotate the field (7) expressed in the original orbital basis {|x〉, |z〉} by the same angle θ = 2π/3
which enabled us to simplify the form of the hopping matrix (2) into (4). Making the inverse
transformation to (3) in equation (7), one obtains the crystal field term,

Hcf = 1
2 E0

∑

iσ

[
cos θ(c†

iξσ ciξσ − c†
iζσ ciζσ ) + sin θ(c†

iξσ ciζσ + c†
iζσ ciξσ )

]
. (22)

Note that cos θ is negative so the field (22) favours the |ξ〉 occupancy over the |ζ 〉 occupancy,
as it should.

Unfortunately, except for the Hamiltonian matrix (11), the form of the other matrices
is now considerably more involved due to off-diagonal elements in the crystal field in
equation (22) which couple states with different T ζ . In general, it is not possible to obtain
analytic expressions for the eigenvalues and one has to resort to a numerical diagonalization.
However, due to the equivalent hopping amplitudes, the eigenvalues of the t2g model should
be independent of the rotation angle θ , i.e., one has to get the same energy spectrum for the
field (22) with finite θ , as well as for the diagonal in pseudospin space field of the form E0T ζ .
This latter field acts along the chain and corresponds to θ = 0 in equation (22).

Numerical values of the eigenvalues obtained for t2g orbitals for E0 = 2t and θ = 2π/3
are listed in table 3. Although the energy spectrum of the t2g model indeed does not depend
on the field direction, expectation values of T ζ in the Hamiltonian eigenstates certainly do, as
a finite rotation angle θ enables the mixing of states with different values of T ζ . For example,
the initial pseudospin T ζ = ±1 of spin triplets with the energy E0/t = ±2 is reduced up to
T ζ = ±0.5 by the field with θ = 2π/3 (cf table 3), whereas it is conserved when θ = 0.

Contrary to the E0 = 0 case with a spin triplet and pseudospin singlet as the t2g ground
state at finite JH > 0, finite positive E0 suppresses the AO pseudospin correlation and stabilizes
a spin singlet with a positive value of T ζ 	 0.5, inducing FO correlations. Remarkably, the
effect of the crystal field on the eg ground state is just the opposite, as reported in table 4.
Namely, by lifting the degeneracy of pseudospin flavours it promotes the immobile |ξ〉 one.
Consequently, there is not that much kinetic energy to be gained and the Coulomb interactions
start to be crucial. However, they are noticeably better optimized by the FM spin correlation.
Indeed, from table 4 one sees a strong competition between the lowest singlet and triplet states,
both with a positive (but still smaller than in the t2g case) value of T ζ 	 0.45. Note also
that it becomes energetically advantageous to have the spin triplet as the ground state for large
JH = U/4 while a smaller Hund’s exchange coupling JH = U/8 drives the system towards the
singlet in the ground state.
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Table 3. Eigenenergies of model (1) with t2g orbitals as obtained at U = 8t with a finite crystal
field E0 = 2t acting perpendicular to the chain, for two values of Hund’s exchange: JH = U/8
and JH = U/4. The spin quantum number Sn and the expectation value of T ζ

n operator (9) in each
eigenstate |n〉 are given.

JH = U/8 JH = U/4

En/t Sn T ζ
n En/t Sn T ζ

n

−2.4767 0 0.4995 −2.4910 0 0.4980
−2.0 1 0.5 −2.0 1 0.5
−0.7016 1 0.0 −1.2361 1 0.0
−0.5311 0 0.0 −0.6056 0 0.0

0.0 1 0.0 0.0 1 0.0
0 0.0 0 0.0

1.5183 0 −0.4977 1.4876 0 −0.4899
2.0 1 −0.5 2.0 1 −0.5
5.0 1 0.0 1 0.0
5.7016 1 0.0 3.2361 1 0.0
5.7639 0 0.4472 5.1716 0 0.3536
6.2695 0 0.4498 5.7610 0 0.3539
7.0 0 0.0 6.0 0 0.0
7.5311 0 0.0 6.6056 0 0.0

10.2361 0 −0.4472 10.8284 0 −0.3536
10.6890 0 −0.4516 11.2424 0 −0.3620

Table 4. The same as in table 3 but for eg orbitals.

JH = U/8 JH = U/4

En/t Sn T ζ
n En/t Sn T ζ

n

−2.0786 0 0.4229 −2.0965 1 0.4429
−2.0548 1 0.4695 −2.0852 0 0.4179
−0.2286 0 −0.0348 −0.4142 1 0.0
−0.1926 1 0.0 −0.2410 0 −0.0305
−0.1468 0 0.0002 −0.1703 0 0.0003
−0.0494 1 0.0734 −0.1169 1 0.1658

1.6727 0 −0.3841 1.5089 1 −0.4969
1.8878 1 −0.5409 1.6340 0 −0.3713
5.1926 1 0.0 2.4142 1 0.0
5.2165 1 −0.0020 2.7045 1 −0.1118
5.8526 0 0.4929 5.2848 0 0.4140
5.8564 0 0.4885 5.3156 0 0.3627
7.0374 0 −0.0538 6.0468 0 −0.0631
7.2305 0 0.0461 6.2702 0 0.0517

10.2567 0 −0.4394 10.8387 0 −0.3512
10.5476 0 −0.5385 11.1064 0 −0.4305

4.2. Specific heat and entropy at finite crystal field

The above ground states and the excitation spectra obtained at finite crystal field E0 = 2t
influence the intersite spin and orbital correlations, shown in figure 8. The ground state of the eg

system depends on the value of JH, being a spin singlet for JH = U/8 which results in negative
〈S1 · S2〉 and a spin triplet for JH = U/4 yielding positive 〈S1 · S2〉 in the low-temperature
regime. In contrast, 〈T1 · T2〉 is positive (FO pseudospin correlations) and almost insensitive
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Figure 8. Temperature dependence of local moments (a) spin 〈S2
i 〉 and (b) pseudospin 〈T2

i 〉, and
of intersite correlation functions (c) spin 〈S1 · S2〉 and (d) pseudospin 〈T1 · T2〉, as obtained for
the model with eg orbitals for JH = U/8 (dashed lines) and JH = U/4 (solid lines). Parameters:
U = 8t and E0 = 2t .

to the value of JH at low temperature. For increasing temperature one finds two transitions—
first, the intersite spin correlations weaken, and second, the pseudospin correlations weaken at
much higher temperature, when charge excitations are thermally activated. This separation of
the energy scales for spin and orbital excitations occurs both for lower JH = U/8 and higher
JH = U/4.

A finite crystal field drastically affects the behaviour of the t2g correlation functions as
well (figure 9). At low temperature, negative 〈S1 · S2〉 reveals the AF coupling between
spins, whereas positive 〈T1 · T2〉 indicates the FO pseudospin correlation, regardless of JH.
In contrast to the eg case, however, spin and pseudospin correlations are reduced and vanish
simultaneously, indicating that spin–orbital degrees of freedom are coupled more strongly in
this case [21].

The change of the magnetic correlations with increasing JH in the eg model is reflected
in the crossover from the AF behaviour of χs at JH = U/8 to the Curie–Weiss behaviour of
χs obtained for JH = U/4; see figure 10(a). In the case of the t2g model (figure 10(b)) one
finds the AF character of χs in the interesting range of JH. Altogether, as for Ez = 0, the spin
susceptibility χs exhibits again the opposite behaviour for both types of orbital—the high-spin
state is suppressed in the t2g model, while it can be selected by the crystal field in the eg model.
The maximum of χs occurs at higher temperature in t2g than in eg model at JH = U/8.

4.3. Specific heat and entropy

As expected from the above results, a finite crystal field also modifies the temperature evolution
of the specific heat C and the entropy S for eg orbitals; see figure 11. The position of the high-
temperature peak of the specific heat at kBT 	 t is almost the same as the position of the
strong anomalies of both on-site correlation functions (cf figures 11(a) and 8). Depending on
JH, the low-temperature entropy S of the eg system either vanishes (for the singlet ground state
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Figure 9. The same as in figure 8 but for the model with t2g orbitals. The dashed (solid) line
corresponds to JH = U/8 (JH = U/4), respectively.
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Figure 10. Temperature dependence of the spin susceptibility log(χs/γ
2 N) per site (N = 2) for

(a) eg model, and (b) t2g model, as obtained for two values of Hund’s exchange: JH = U/8 (dashed
lines) and JH = U/4 (solid lines). Parameters: U = 8t , E0 = 2t .
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Figure 11. Temperature dependence of: (a) the specific heat C , and (b) the entropy S for eg orbitals.
The dashed (solid) line corresponds to JH = U/8 (JH = U/4), respectively. Parameters: U = 8t
and E0 = 2t .
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Figure 12. The same as in figure 11 but for t2g orbitals. The dashed (solid) line corresponds to
JH = U/8 (JH = U/4), respectively.
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Figure 13. Zero temperature intersite correlation functions: spin 〈S1 · S2〉 (solid lines) and
pseudospin 〈T1 ·T2〉 (dashed lines) as functions of the Stoner parameter U + JH for (a) eg orbitals,
and (b) t2g orbitals. Parameters: E0 = 2t , JH = U/4. The dotted line shows the spin–spin
correlation function 〈S1 · S2〉0 obtained in the Ising limit (see text).

as JH � U/8) or approaches the value kB ln 3 (for the triplet ground state at JH = U/4).
Nevertheless, owing to the vanishing specific heat, all the curves in figure 11(b) have a point of
inflection S = kB ln 4 at kBT 	 0.1t . Note that in contrast to the case without a crystal field,
there is no such a point when S = kB ln 16. Namely, by promoting one pseudospin over the
other one, a finite crystal field markedly lowers the states with double occupancies; hence the
usual gap between the singly and doubly occupied states vanishes.

Consider now the temperature behaviour of the specific heat for t2g orbitals shown in
figure 12(a). Instead of the high- and low-temperature peaks of the specific heat one observes
two slightly separated peaks for JH = U/8 which merge into a wide peak at JH = U/4. This
confirms that spin–orbital degrees of freedom are strongly coupled as spin and orbital intersite
correlations change at the same temperature (see figure 9). Finally, as shown in figure 12(b),
the entropy of the t2g system is almost independent of JH. We note that S is entirely suppressed
at low T due to a spin singlet ground state; it rises rapidly at kBT 	 0.1t , and eventually
approaches the limiting value S = kB ln 28, not having any point of inflection. Such a behaviour
is a direct consequence of a single broad peak in the specific heat and no separation of the
energy scales for spin and orbital excitations.

We close this section with a short discussion of the intersite spin 〈S1 · S2〉 and pseudospin
〈T1 · T2〉 correlations for the eg system depicted in figure 13(a) as functions of the Stoner
parameter, I = U + JH, in the presence of a finite crystal field E0 = 2t . As expected, the
results illustrate the AF correlation between spins on two sites in the weak coupling regime
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U + JH � 7t . However, further increase of the interaction strength gradually changes the
AF coupling into an FM one, with the immobile |ξ〉 pseudospin component preferred by the
crystal field. Remarkably, such a transition at U + JH 	 16t in the presence of the same
crystal field E0 = 2t from the AF phase into the FM one has been obtained on the infinite
lattice in the Hartree approximation recently [33]. (The mean field phase diagram appears
more involved [32], since FM order is stabilized for 5 � I/t � 6.5, in contrast to what is
obtained in the present study. Nevertheless this mostly reflects the strong competition between
the FM and AF phases, since their energy does not differ by more than 1% in this regime [44].)
Consequently, owing to a strong competition between the singlet and triplet states with the
lowest energies (cf table 4), respectively, one can conjecture that fluctuations clearly affect the
intersite spin correlations. Indeed, comparison of 〈S1 ·S2〉 and 〈S1 ·S2〉0 determined in the Ising
limit (i.e., taking only Sz

i operators and neglecting the last term in the Hamiltonian (6)) shows
that dynamics acts to reduce the AF coupling between spins. In contrast, a finite crystal field
affects 〈T1 ·T2〉 only slightly, and the pseudospin correlations are always positive for increasing
I regardless of E0, which implies the FO coupling between two pseudospins (cf figures 7(a)
and 13(a)). Thus, in the regime of large Stoner parameter I one finds that the classical
Goodenough–Kanamori rules [34] are violated as the crystal field stabilizes a particular orbital
configuration. In contrast to quantum spin–orbital entanglement [35], this effect here is static
and may play an important role for the observed magnetic and orbital correlations in transition
metal oxides, as discussed recently on the example of LiNiO2 [45].

Turning now to the t2g model with positive 〈S1 ·S2〉 and negative 〈T1 ·T2〉 in the degenerate
case shown in figure 7(b), the situation is also changed drastically by a finite crystal field as
depicted in figure 13(b). Indeed, the resulting 〈S1 · S2〉 is then negative, revealing the AF
nature of the ground state. However, due to the energy gap between a singlet ground state and
the first excited triplet state (cf table 3), the fluctuations modify the value of the intersite spin
correlations only slightly, so 〈S1 · S2〉 and 〈S1 · S2〉0 almost overlap. Finally, positive 〈T1 · T2〉
shows that the AO pseudospin correlations found before at E0 = 0 are suppressed.

5. Summary

We have obtained the exact numerical results for a two-site Hubbard model with two eg orbitals
at quarter-filling. By an appropriate transformation of the original orbital basis {|x〉, |z〉} into
a basis consisting of a directional orbital |ζ 〉 along the molecular bond and a planar and
orthogonal to it orbital |ξ〉, we have simplified the hopping matrix, making use of the properties
of eg orbitals—the electrons in |ζ 〉 directional orbitals are mobile, while those in orthogonal
|ξ〉 orbitals are fully localized [38]. The results were compared with the doubly degenerate
Hubbard model with two equivalent t2g orbitals active along the molecular bond direction.

As the first important result, a striking difference between t2g and eg orbitals with respect
to the ground state has been established. Indeed, in contrast to the t2g model, where even
infinitesimally small Hund’s exchange JH > 0 lifts the degeneracy of the lowest energy singlet
and triplet states and stabilizes the FM spin correlation, we have found that a spin singlet ground
state survives up to JH 	 0.27U for eg electrons. In this regime of parameters, the intersite
spin correlations 〈S1 · S2〉 indicate the AF nature of the ground state, whereas the pseudospin
function 〈T1 · T2〉 illustrates the FO pseudospin correlation. On the contrary, in the t2g model,
except for JH = 0 when the intersite spin and pseudospin correlation functions overlap and are
negative, positive 〈S1 · S2〉 demonstrates the FM nature of the ground state supported by the
pseudospin singlet with negative 〈T1 · T2〉, i.e., AO correlations. Therefore, a complementary
behaviour of the spin and orbital flavours is observed as a generic feature of both models, in
agreement with the Goodenough–Kanamori rules [34].
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We have further demonstrated the influence of a finite crystal field E0 on the ground state.
On the one hand, it suppresses the FM spin correlation in the t2g model and stabilizes the
spin singlet ground state with negative 〈S1 · S2〉, accompanied by positive 〈T1 · T2〉. On
the other hand, the effect of the crystal field on the eg ground state is the opposite one.
Namely, by lifting the degeneracy of the pseudospin flavours it promotes the immobile |ξ〉
one. Consequently, not much kinetic energy can be gained and the Coulomb interactions start to
dominate. However, they are noticeably better optimized by the FM spin correlation. Therefore,
it becomes energetically advantageous to have the spin triplet, and the ground state for large
JH = U/4 yields positive 〈S1 · S2〉, while a smaller Hund’s exchange coupling JH = U/8
drives the system towards the singlet in the ground state which results in negative 〈S1 · S2〉.
In contrast, 〈T1 · T2〉 is positive and almost insensitive to the actual value of JH in the range
0 < JH < U/4.

Next, we have investigated how the eg ground state properties evolve as a function of the
Stoner parameter I = U + JH in the presence of a finite crystal field E0 = 2t . As expected,
we have found the AF correlation between spins on two sites in the weak coupling regime
U + JH � 7t . However, further increase of the interaction strength gradually changes the
AF coupling into an FM one, with an immobile |ξ〉 pseudospin, preferred by the crystal field.
Finally, by comparing the correlation function 〈S1·S2〉 with the one determined in the Ising limit
〈S1 · S2〉0, we have elucidated the role of fluctuations in the intersite spin correlation function
and have observed that the dynamics helps to reduce strongly the AF coupling between spins in
this case. In contrast, when the ground state is FM, fluctuations only slightly modify the value
of the intersite spin correlations, so 〈S1 · S2〉 and 〈S1 · S2〉0 almost overlap.

Although our results presented here are only a starting point and a systematic analysis of
the properties of the ground states and spin–orbital correlations in realistic two-band models
with eg and t2g orbitals of higher dimension is required, our study shows that the description
of transition metal oxides with partly filled (almost) degenerate orbitals has to involve correct
symmetry of the orbital degrees of freedom, and thus has to go beyond the simplified Hubbard
model with degenerate equivalent orbitals. This observation is also supported by our recent
study of stripe phases in the nickelates [46]. Indeed, the diagonal stripe structures with filling
of nearly one hole per atom in a domain wall, as observed experimentally, are the ground
state of the model with the physically relevant hopping elements between eg orbitals, while
instead the most stable stripes have half-filled domain wall atoms within the doubly degenerate
Hubbard model. We therefore conclude that the ground state properties strongly depend on the
orbital degrees of freedom that are active in a given compound.
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POLONIUM 09294VH.

Appendix A. Construction of the basis for the two-site model

We construct a basis of the Hilbert space, starting with the Sz = 1 subspace. There are two
states with T ζ = ±1,

|�ζ↑〉 = c†
1ζ↑c†

2ζ↑|0〉, |�ξ↑〉 = c†
1ξ↑c†

2ξ↑|0〉, (A.1)
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and four with T ζ = 0,

|�±
1↑〉 = 1√

2
(c†

1ξ↑c†
2ζ↑ ± c†

1ζ↑c†
2ξ↑)|0〉, (A.2)

|�±
2↑〉 = 1√

2
(c†

1ξ↑c†
1ζ↑ ± c†

2ξ↑c†
2ζ↑)|0〉. (A.3)

In the Sz = 0 subspace there are eight states with T ζ = ±1,

|	±
1 〉 = 1√

2
(c†

1ζ↑c†
2ζ↓ ± c†

1ζ↓c†
2ζ↑)|0〉, (A.4)

|	±
2 〉 = 1√

2
(c†

1ζ↑c†
1ζ↓ ± c†

2ζ↑c†
2ζ↓)|0〉, (A.5)

|	±
3 〉 = 1√

2
(c†

1ξ↑c†
1ξ↓ ± c†

2ξ↑c†
2ξ↓)|0〉, (A.6)

|	±
4 〉 = 1√

2
(c†

1ξ↑c†
2ξ↓ ± c†

1ξ↓c†
2ξ↑)|0〉, (A.7)

and eight with T ζ = 0,

|	±
5 〉 = 1

2 (c
†
1ξ↑c†

1ζ↓ + c†
1ξ↓c†

1ζ↑ ± (c†
2ξ↑c†

2ζ↓ + c†
2ξ↓c†

2ζ↑))|0〉, (A.8)

|	±
6 〉 = 1

2 (c
†
1ξ↑c†

2ζ↓ + c†
1ξ↓c†

2ζ↑ ± (c†
1ζ↓c†

2ξ↑ + c†
1ζ↑c†

2ξ↓))|0〉, (A.9)

|	±
7 〉 = 1

2 (c
†
1ξ↑c†

1ζ↓ − c†
1ξ↓c†

1ζ↑ ± (c†
2ξ↑c†

2ζ↓ − c†
2ξ↓c†

2ζ↑))|0〉, (A.10)

|	±
8 〉 = 1

2 (c
†
1ξ↑c†

2ζ↓ − c†
1ξ↓c†

2ζ↑ ± (c†
1ζ↓c†

2ξ↑ − c†
1ζ↑c†

2ξ↓))|0〉. (A.11)

The states |	+
1 〉 and |	+

4 〉, together with |	±
5 〉 and |	±

6 〉, belong to the triplet subspace.

Appendix B. Eigenvalues of the Hamiltonian (1) with t2g orbitals

Below we give a complete list of the eigenvalues of Hamiltonian (1) for t2g orbitals in the
absence of crystal field splitting (at E0 = 0) with the degeneracy of the states given in
parentheses.

• S = 1 subspace

1
2

{
U − 3JH ±

√
(U − 3JH)2 + 16t2

}
(3), U − 3JH (3), 0 (9); (B.1)

• S = 0 subspace

1
2

{
U − JH ±

√
(U − JH)2 + 16t2

}
(2), U − JH (2), (B.2)

and
1
2

{
U + JH ±

√
(U + JH)2 + 16t2

}
, U + JH, 0. (B.3)

Appendix C. Eigenvalues of the Hamiltonian (1) with eg orbitals

Finally we present the eigenvalues of the Hamiltonian given by equation (1) for eg orbitals in
the absence of crystal field splitting (at E0 = 0). The degeneracy of the states is given in
parentheses.

• S = 1 subspace

1
2

{
U − 3JH ±

√
(U − 3JH)2 + 4t2

}
(6), 0 (6); (C.1)
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• S = 0 subspace

1
2

{
U − JH ±

√
(U − JH)2 + 4t2

}
(2), U ± JH, 0, (C.2)

and,

λ−1 = 2U

3




1 −
√

1 + 3

(
JH

U

)2

+ 12

(
t

U

)2

cos

(
α

3

)


 , (C.3)

λ0 = 2U

3




1 +
√

1 + 3

(
JH

U

)2

+ 12

(
t

U

)2

cos

(
π + α

3

)


 , (C.4)

λ1 = 2U

3




1 +
√

1 + 3

(
JH

U

)2

+ 12

(
t

U

)2

cos

(
π − α

3

)


 , (C.5)

with

cos (α) = 1 − ( 3JH
U )2 + 2( 3t

U )2

{1 + 3( JH
U )2 + 12( t

U )2} 3
2

. (C.6)

The latter three eigenvalues follow from the submatrix in equation (12).
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[7] Möller B, Doll K and Frésard R 1993 J. Phys.: Condens. Matter 5 4847
[8] Byczuk K, Ulmke M and Vollhardt D 2003 Phys. Rev. Lett. 90 196403
[9] Lieb E H 1989 Phys. Rev. Lett. 62 1201

[10] Hirsch J E 1989 Phys. Rev. B 40 2354
Hirsch J E 1991 Phys. Rev. B 43 705
Kollar M, Strack R and Vollhardt D 1996 Phys. Rev. B 53 9225

[11] Slater J C, Statz H and Koster G F 1953 Phys. Rev. 91 1323
[12] Van Vleck J H 1953 Rev. Mod. Phys. 25 220
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